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De�nition (Unital Quantum Channel)

Figure: A quantum channel between Hilbert spaces of the same dimension

De�nition

A quantum channel T : B(H)→ B(H) is a linear, completely positive
and trace preserving map. T is called unital if T (1) = 1.
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Jamiolkowski Isomorphism

Let T be a quantum channel with Kraus operator representation
T =

∑
k Ak · A†k . Setting

ρT := (T ⊗ id)(|Ω〉 〈Ω|) =
∑
k

|ek〉 〈ek | ,

|ek〉 :=
1√
d

∑
i

(Ak |i〉) |i〉

gives a convex-linear isomorphism between the set of unital quantum
channels and

{ρ ∈ B (H⊗H) : ρ ≥ 0, tr1ρ = tr2ρ = 1/d} .
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Characterizing Unital Channels

Let T : B(H)→ B(H) be a quantum channel, then the following are
equivalent:

T is unital, i.e. T (1) = 1

T is contractive with respect to the p-Schatten norm for every
p ∈ (1,∞], that is, ‖T‖p−p ≤ 1

‖T‖p−p ≤ 1 for some p ∈ (1,∞] [PGWPR06]

T can be represented as a convex combination of unitary maps on
the bipartite system, i.e. T̂ =

∑
i pi Ûi with Ui ∈ B(H⊗H) unitary

T is an a�ne-linear combination of unitary channels,
T (ρ) =

∑
i λi UiρU

†
i with λi ∈ R and

∑
i λi = 1

The asymptotic environment-assisted capacity of T obtains its

maximum, Ce.a.(T ) = maxρmin {S(ρ),S(T (ρ))} !
= log d [SVW05][Win05]
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Extremal Unital Channels [LS93] [Cho75]

Kraus operator representation T =
∑

k Ak · A†k .

Theorem

T is extreme in the set of quantum channels if and only if
{
A†kAl

}
k,l

is

linearly independent. If T is unital, then T is extreme in the set of unital
quantum channels if and only if{

A†kAl ⊕ AlA
†
k

}
k,l

is linearly independent.

∃ extremal unital channels which are not extreme in the set of quantum
channels? (Numerics for d = 3 and 4 Kraus operators  yes!)
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Unitary Channels

De�nition

A quantum channel T is called a unitary channel if

T (ρ) = UρU† with U ∈ B(H) unitary.

In particular, every unitary channel is unital.

What is the convex hull of these channels? I.e. given a unital quantum
channel T , can T be decomposed into

T (ρ) =
∑
i

pi UiρU
†
i ?

Physical motivation: classical error mechanisms.
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Classical Birkho�'s Theorem

Classical probability vector p, stochastic evolution matrix E

p′ = E p.

E is called doubly stochastic (quantum analogue: unital) if and only if
E 1 = 1, i.e. all rows sum to 1.

Birkho�'s Theorem

The extremal doubly stochastic matrices are precisely the permutations.
Hence every doubly stochastic matrix is a convex combination of
permutations:

E =
∑
i

pi Pi , Pi permutation matrix ∀ i .

The Pi are the invertible elements (quantum analogue: unitary channels).
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Quantum Analogue of Birkho�'s Theorem [LS93]

Proposition

Let d := dimH = 2. Then every unital quantum channel T is a convex
combination of unitary channels.
This holds no longer true for d ≥ 3, i.e. for d odd and the
Werner-Holevo channel

TWH : ρ 7→ 1

d − 1

(
tr[ρ]1− ρT

)
.

But: asymptotic version for T⊗k as k →∞ might be true! [GW02] [SVW05]

[Win05]
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Environment Assisted Error Correction [GW02]

Figure: Correction scheme for a noisy channel T

Proposition

There exists a family of channels Rα restoring quantum information if
and only if T is a convex combination of unitary channels.
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Reformulating the Convex Hull Problem [AS07]

Determine all possible convex decompositions of ρT  all possible square
roots

Z = ρ
1/2
T R, R right-unitary.

Theorem

An unital quantum channel T is a convex combination of unitary
channels if and only if there is a right-unitary d2 × K matrix R (K ≥ d2)
such that

diag
(
R†GiR

)
= 0 for all i = 1, . . . d2 − 1,

Gi := ρ
1/2
T (τi ⊗ 1) ρ

1/2
T .

By Caratheodory's theorem, K ≤ d4 + 1 su�ces.
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Separation Witnesses

Idea: use separating hyperplanes between a given class of quantum
channels S and channels not in S.

Theorem (Hahn-Banach)

Let S be a bounded, closed, convex subset of the set of all quantum
channels, and let T be a quantum channel not in S. Then there exists a
Hermitian operator W such that (in the Jamiolkowski representation)

tr [W ρT ] < 0, but tr [Wσ] ≥ 0 ∀σ ∈ S.

W is called a separation witness.
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Separation Witnesses (continued)

Apply this to the convex hull of unitary channels for certain classes of
separation witnesses. Need bounds on tr [W ρT ] for all unitary channels
T .

W = (A⊗ 1) F
(
A† ⊗ 1

)
, A ∈ B(H) arbitrary (�ip operator

F =
∑d

i,j=1
|ij〉 〈ji |)  {

−2
∑d/2

i=1
σ2i−1σ2i , d even

−2
∑d−1/2

i=1
σ2i−1σ2i + σ2

d , d odd

}
≤ d · tr [W ρT ] ≤ ‖A‖2

2

with σ1 ≥ · · · ≥ σd the singular values of A.

W = αF + β |Ω〉 〈Ω|  maximize |trU|2 for �xed tr
[
UU
]
and U

unitary, see next slide (covariant channels)
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Covariant Channels [VW01]

Figure: Covariant channels: ρT = (O ⊗ O) ρT (O ⊗ O)†
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Negativity as Distance Measure

Every unital channel T is an a�ne-linear combination of unitary channels
 de�ne a negativity canonically as

N (ρT ) := inf
{
α : ρT = (1 + α) ρ+ − αρ−, α ≥ 0, ρ± ∈ SU

}
.

Figure: Negativity

Christian Mendl Unital Quantum Channels



Introduction
Characterizing Unital Channels

Unitary Channels

Koenraad M. R. Audenaert and Stefan Scheel.
On random unitary channels.
arXiv:quant-ph, page 0709.0824v1, 2007.

Man-Duen Choi.
Completely positive linear maps on complex matrices.
Linear Algebra and its Applications, 10:285�290, 1975.

M. Gregoratti and R. F. Werner.
Quantum lost and found.
arXiv:quant-ph, page 0209025v1, 2002.

L. J. Landau and R. F. Streater.
On birkho�s theorem for doubly stochastic completely positive maps
of matrix algebras.
Linear Algebra and its Applications, 193:107�127, 1993.

David Pérez-García, Michael M. Wolf, Denes Petz, and Mary Beth
Ruskai.
Contractivity of positive and trace preserving maps under lp norms.
arXiv: math-ph, 0601063, 2006.

John A. Smolin, Frank Verstraete, and Andreas Winter.
Entanglement of assistance and multipartite state distillation.
arXiv:quant-ph, 0505038v1, 2005.

K.G. H. Vollbrecht and R. F. Werner.
Entanglement measures under symmetry.
arXiv, quant-ph/0010095 v2, 2001.

Andreas Winter.
On environment-assisted capacities of quantum channels.
arXiv:quant-ph, page 0507045, 2005.

Christian Mendl Unital Quantum Channels


	Introduction
	Characterizing Unital Channels
	Unitary Channels

